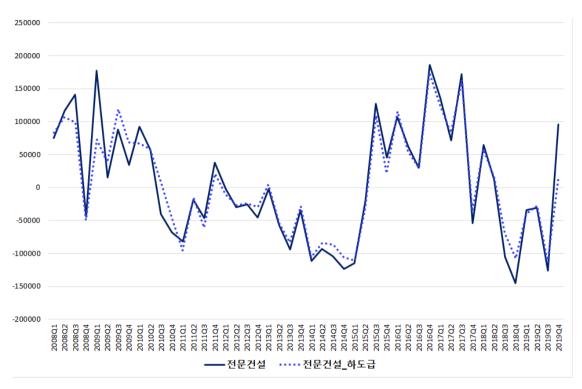
전문건설업 공종별 시계열분석

권주안, 박선구, 문혁

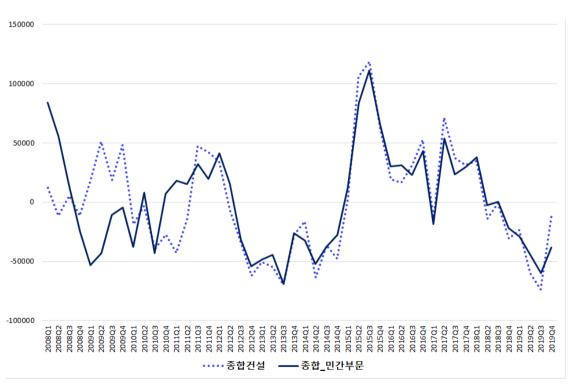
2020. 10

요 약

■ 과제 배경 및 목적


- (배경) 생산체계 개편으로 전문건설업 업종 조정 등 많은 변화가 예상되는 상황에서 지속적 발전을 위한 전문건설업 이해도 증진 및 기초 자료 확보 필요
- (목적) 도급 형태로 파생되는 영업환경에서 전문건설업의 업종 및 공종별 계약금액의 경기 변동 패턴 분석과 전문건설업 계약금액 결정식 추정(동태분석)을 통해 향후 전망 수단으로 활용

■ 시계열분석 개요 및 자료


- 경기변동은 HP필터를 통해 순환변동을 추출하고 전문건설업 계약금액 결정 요인은 별도 시계열분석을 통해 추정, 기성 등 기존 활용된 자료와 다른 계약금액 선택
- 통계자료: 전문건설업 계약금액 통계는 KOSCA 자료 활용. 원시계열은 월별로 구축되었으나 분석 편의와 결과 적합성을 위해 분기별로 전환하여 사용. 종합건설업 계약금액 통계는 KISCON 보유 통계 활용. 역시 원시계열은 월별로 구축되어 있으나 분기별로 전환하여 사용

■ 전문/종합건설업 순환변동

- 전문건설업은 사업 특성 상 종합건설업의 하도급 혹은 공공부문 발주 공사의 원도급 수주를 통해 사업을 영위하므로 전문건설업 순환변동은 전문건설업 하도급과 일치하는 변동 패턴을 보임
- 종합건설업은 민간부문 변동성과 일치하는 패턴을 보임 : 공공부문은 시장의 니즈 변화나 순환적 사이클과는 달리 정책적 필요에 의해 추진된다는 점에서 종합건설 경기변동은 민간 부문의 변동과 일치하는 것으로 판단
- 다만, 2008년~2012년 기간 동안은 종합건설 순환변동과 민간부문 순환변동이 일치하지 않는 것으로 나타나며 이는 4대강사업에 기인

〈 전문건설업 순환변동 〉

〈 종합건설업 순환변동 〉

■ 동행성 점검: 피어슨 상관계수 (Pearson Correlation Coefficient)

- 인과관계가 아닌 상관관계를 분석하는 방법으로 계수 값과 통계적 유의도를 기준으로 해석
- 전문건설업은 모든 주요 공종과의 상관관계가 강할 뿐 아니라 통계적으로 매우 유의한 수 준으로 분석. 전반적인 변동성은 모든 공종과 연계되어 변하는 것으로 해석 가능함
- 계수값 크기를 기준으로 판단한다면 비주거용건축과 기반공사가 가장 강한 상관관계를 가지고 있으며, 주거용건축, 구조물공사, 내외장공사도 다음 순으로 강한 상관관계를 가진 것으로 분석. 종합건설업, 토건, 건축, 전문건설업의 토목도 상관관계를 가지고 있으나 정도는 가장 약함
- 변수 간 동행 및 상호 상관성이 높은 것으로 해석되며 상호 연관성으로 인해 두 개 이상의 공종 간 인과관계 분석에 한계로 작용할 가능성 높음. 공종 간 혹은 전문건설업과 공종들 간의 경기변동 분석에서 뚜렷하게 드러나는 강한 인과관계를 찾는데 한계로 작용

■ 선행성 점검 : 그랜저 인과분석 Granger Causality

- 종합건설업 발주를 통해 전문건설업 매출 기회가 생성되므로 이론적으로 인과관계는 종합에서 전문으로 이어진다는 가설을 세우고 분석. 통계적 유의도를 기준으로 판단한다면, 종합건설업 토건이 강한 연관성을 가지고 있으며 다음으로 종합건설업 전체, 건축의 순으로 분석
- 〈전문 공종 ⇒ 전문〉 관계 분석에선, 주거용건물건축, 기반공사, 내외장공사가 강한 인과관 계를 가지고 있음
- 인과관계의 시차가 뚜렷하게 고정되어 안정적 관계성을 보이지 않아 추가적인 분석에 한계 발생. 종합건설과 토건 및 건축 순환변동은 1~4분기 시차까지 전문건설업과 주거용건물건 축에 강하게 영향을 줄 뿐 아니라 선행하는 것으로 분석되었음

〈 순환변동 그랜저 인과분석 〉

	구 분	종합건설	토건	건축		구 분	종합건설	토건	건축
1	전문건설업	₩*	₩ **	₩ **	2	전문건설업	₩ *	₩ **	₩ *
분	주거용건축	₩ *	₩ **	₩ *	분	주거용건축	₩*	₩*	₩ *
기	기반공사	₩ *	₩ **	-	기	기반공사	₩ *	₩*	₩ **
	전문건설업	₩ *	₩*	₩ *		전문건설업	₩ *	₩ *	_
3	주거용건축	₩ *	₩**	-	4	주거용건축	₩ *	₩*	_
분기	기반공사	-	₩ **	₩ *	분 기	기반공사	₩*	₩*	_
	내외장공사	_	-	₩ *		내외장공사	_	_	₩ *

주: **는 0.01 수준에서 유의 / *는 0.05 수준에서 유의

■ VEC 분석 및 분산분해

- 앞의 분석에서 업종별 영향을 추론할 수 있는 유의미한 결과를 얻지 못해 VAR과 VEC 추가 추정
- 공적분 관계를 확인한 후, VEC I 추정. 전문건설업과 공종별 계약금액 대상으로 VEC 추정 후 분산분해를 통해 전문건설업 계약금액 대상으로 비주거용건축이 70% 설명하며, 다음으로는 토목이 14.8%, 그리고 주거용건축이 13.9%, 마지막으로 전문건설업 자체는 1.4% 설명하는 것으로 분석되었음. 주거용건축을 포함한 전체 건축공사는 전문건설업 계약금액의 84% 설명하는 것으로 추정됨

〈 전문건설업 계약금액 분산분해 Ⅰ 〉

Period	S.E.	DCIVIL	DNONR	DRESI	DSPCON					
1	11185.28	10.28888	63.68789	24.65308	1.370157					
2	13823.91	13.14207	67.09951	18.74388	1.014536					
3	14486.84	14.81514	65.48581	18.61147	1.087593					
4	14768.96	14.46357	64.82797	19.64336	1.065104					
5	17033.04	13.36255	67.76402	17.45887	1.414568					
6	18162.35	14.06047	69.25766	15.40420	1.277665					
7	18898.94	15.19139	68.93937	14.53289	1.336344					
8	19326.33	14.75873	68.72917	15.23385	1.278251					
9	20611.07	14.29919	69.38083	14.87601	1.443972					
10	21303.80	14.77885	69.93502	13.92583	1.360302					
	Cholesky Ordering: DCIVIL DNONR DRESI DSPCON									

- 종합건설업과의 관계 추정을 위한 VEC 모형 II 통한 분산분석 결과, 전문건설업 자체 설명 비율이 61%로 가장 크며, 민간건축이 16.3%, 민간토건이 9.1%,민간토목이 8.4%이며 마지막으로 민간종합이 4.7% 설명력을 가진 것으로 분석됨

〈 전문건설업 계약금액 분산분해 Ⅱ 〉

Period	S.E.	D2PVTOGUN	DHDSP	DPVGUNCHUK	DPVJONG	PVTOMOK
1	9191.328	1.486986	98.51301	0.000000	0.000000	0.000000
2	11367.81	0.976112	92.56763	1.956705	3.198057	1.301495
3	12418.51	1.446284	86.08950	1.854110	9.519159	1.090949
4	13740.21	5.798822	71.97027	13.52679	7.812456	0.891659
5	15560.04	4.610330	74.00652	13.70721	6.938342	0.737603
6	16836.90	6.630873	67.84139	13.47253	6.285348	5.769859
7	17828.99	5.934011	68.41592	12.25169	5.983691	7.414693
8	19077.92	8.637637	62.28575	17.36181	5.237444	6.477364
9	20111.15	8.607655	63.30713	16.99732	4.879044	6.208846
10	20843.03	9.082175	61.44715	16.34899	4.732168	8.389514
	Cholesky Or	dering: D2PVTOC	GUN DHDSP I	DPVGUNCHUK [PVJONG PVT	OMOK

- 전문 및 종합 모두 건축에 의한 영향이 더 큰 것으로 분석되었으며 이는 경제성장으로 파생된 각종 사회간접자본 니즈는 꾸준한 건설 공급으로 어느 정도 충족되거나 일정 규모 공급이 연간 정기적으로 발생하는 반면 건축 니즈는 다양하고 꾸준히 증가하는 수요로 이어지는 특성을 반영한 것으로 추정됨

■ 전문건설업 계약금액 동태분석

- 거시경제, 금융 및 건설비용, 주택 등 관련 산업 주요 변수와의 관계를 중심으로 추출/ 패널 등 다양한 분석을 통해 전문건설업 업종 혹은 공종을 포함하여 분석하는 시도를 했으 나 다중공선성 문제와 일정한 관계가 성립하지 않는 분석 결과를 도출하여 제외 : 더블로그 적용

- 통계자료

	변 수	출처			
건설투자	명목/계절조정/분기	십억원	한국은행, 국민계정		
GDP/GNI	명목/계절조정/분기	십억원	한국은행, 국민계정		
M2	명목/계절조정/월(말잔)	십억원	한국은행, 통화금융통계		
화시채(BBB-)	명목/월	%	한국은행, 시장금리 추이		
콜금리	월(평균)	%	한국은행, 시장금리 추이		
전국주택매매가격지수	월	-	한국감정원, 전국주택가격동향조사		
중간재가격지수	월(건설용,국내용)	_	한국은행, 생산자물가조사		
건축허가면적 월			국토교통부, 건축 허가.착공통계		

- 인과관계 분석

Causality →	전문건설업계약	전문하도급계약	주거용건축계약	종합건설민간계약
건설투자	00000	00000		0
GDP	0000	0000	•	00000
M2	0000	0000	0 284	0
화시채(BBB-)	0000	0000	0 0	0000
중간재가격지수	0 0 0	0 0 0		8
전국매매가격지수	00000	0008		00000
건축허가면적	284	0 284	0 284	0 0

주 : 통계적 유의수준은 0.05 이하

- 동태모형은 독립변수의 시차를 적용하였으며 인과관계 분석 결과를 감안하여 최대 2분기의 시차로 한정하였음. 독립변수의 변동이 전문건설업에 대한 영향을 탄력계수를 통해 추정할 수 있도록 변수 모두 로그 변환 후 사용하였음
- 전체적인 모형의 적합도는 양호하며 자기상관 문제도 없는 것으로 분석되었음. 시차별로 계수 값의 부호가 (+)(-)로 변하는 것은 분기별 자료의 특성으로 한 분기는 양의 영향으로 다음 분기는 기저효과 등으로 음의 영향을 주는 것으로 판단됨
- GDP와 M2는 두 분기 모두 포함하는 것이 전체 적합도를 상승시킴. 그러나 개별 변수 GDP는 1분기 시차의 통계적 유의도는 없으며, 반면 M2는 1분기 시차는 (+), 2분기 시차는 (-)로 분석되었고 모두 통계적 유의도는 유의미 결정을 충분히 지지함. 전국주택가격지 수도 비슷한 패턴의 결과를 얻었음

* 전문건설업 계약금액 Variable Coefficient t-Statistic Std. Error Prob. 건설투자(-1) 0.800485 0.132525 6.040258 0.0000 GDP(-1) 0.551941 0.792517 0.696440 0.4890 GDP(-2) 0.846238 0.0065 -2.389151 -2.823262 M2(-1)3.119400 0.748152 4.169474 0.0001 M2(-2)-2.599266 0.0119 -2.067816 0.795539 건축허가면적(-1) 0.088947 0.040834 2.178234 0.0335 건축허가면적(-2) 0.165713 0.040395 4.102341 0.0001 회사채금리(-1) -0.2070540.111369 -1.859173 0.0682 중간재가격지수(-1) 0.207149 0.180365 1.148499 0.2556 전국주택매매가격지수(-1) -1.4907820.645979 -2.307786 0.0247 전국주택매매가격지수(-2) 1.567681 0.583424 2.687037 0.0094 상수항 3.927116 1.482476 2.649025 0.0104 AR(1) 0.059963 -0.5306990.5977 -0.031822AR(2) -0.893624 0.058580 -15.25477 0.0000 Mean dependent var R-squared 0.905150 9.574134 Adjusted R-squared 0.883517 S.D. dependent var 0.224316 S.E. of regression Akaike info criterion 0.076558 -2.126801Sum squared resid 0.334084 Schwarz criterion -1.680638 Log likelihood 89.50142 Hannan-Quinn criter. -1.949376 F-statistic 41.84211 Durbin-Watson stat 2.574852

목 차

요 약	i
Ⅰ. 과제 및 전문건설업 개요────	1
1. 과제개요	1
2. 통계자료	1
3. 전문건설업 공종별 계약금액	3
II. 전문건설업 경기변동분석	5
1. 전문 및 종합건설업 경기변동	5
2. 전문건설업 순환변동 I : 동행성	9
3. 전문건설업 순환변동 Ⅱ : 선행성	13
4. 전문건설업 순환변동 Ⅲ : 주택시장 연계성	15
Ⅲ. 전문건설업 공종별 영향────	17
1. 분석 개요	17
2. 전문건설업 VEC 추정 I	17
3. 전문건설업 계약금액 VEC 추정 II	20
V. 전문건설업 동태모형	24
1. 동태모형 개관	24
2. 동태모형 추정	25
V. 결론————	27
참고문헌	29

1. 과제 및 전문건설업 개요

1. 과제 개요

- O (배경) 생산체계 개편으로 전문건설업 업종 조정 등 많은 변화가 예상되는 상황에 서 지속적 발전을 위한 전문건설업 이해도 증진 및 기초 자료 확보 필요
- O (목적) 도급 형태로 파생되는 영업 여건 환경에서 전문건설업의 업종 및 공종별 계약금액의 경기변동 패턴을 분석하고, 전문건설업 계약금액 결정식 추정을 통해 향후 경기 전망 수단으로 활용

2. 통계자료

- O 종합건설업과 전문건설업의 구분:《건설산업기본법》
 - 건설공사는 토목공사, 건축공사, 산업설비공사, 조경공사, 환경시설공사, 그 밖에 명 칭과 관계없이 시설물을 설치·유지·보수하는공사(시설물을 설치하기 위한 부지조 성공사를 포함한다) 및 기계설비나 그 밖의 구조물의 설치 및 해체공사 등을 포함
 - 종합공사 : 종합적인 계획, 관리 및 조정을 하면서 시설물을 시공하는 건설공사 / 종합공사를 시공하는 업종은 종합건설업
 - 전문공사 : 시설물의 일부 또는 전문 분야에 관한 건설공사 / 이를 시공하는 업종 은 전문건설업
- O 종합건설업 통계: KISCON / CWS
 - 종합건설업 공사 중 계약금액 기준으로 1억원 이상의 경우 의무적으로 신고하며 이를 통해 원자료 축적

1

- 토건, 토목, 건축, 산업설비, 조경의 5개로 공종으로 구분하고, 민간과 공공으로 발주 기관으로 구분하여 원자료 축적

- 주요 공종 구분 기준

구 분	토건	토목	건축공사
자본금	법인 12억원 이상 개인 24억원 이상	법인 7억원 이상 개인 14억원 이상	법인 5억원 이상 개인 10억원 이상
기술 능력	 건설기술자 11인 이상 토목분야 중급 이상 2인 포함 5인 이상 건축분야 중급 이상 2인 포함 5인 이상 	토목기사, 중급기술자 2인 포함한 토목분야 기술자 6인 이상	건축기사, 중급기사 2인 포함한 건축분야 기술자 5인 이상

O 전문건설업 자료1): KOSCA 협회 구축

- 전문건설업 업종은 기본법 상 총 29개이나, 본 분석 대상은 대한전문건설업협회 (KOSCA) 업종인 21개로 한정하여 분석
 - 21개 업종은 실내건축, 토공, 습식방수, 석공, 도장, 비계, 금속창호, 지붕건조, 철근콘크리트, 상하수도, 보링, 철도궤도, 포장, 수중, 조경식재, 조경시설, 강구조물, 철강재, 삭도, 준설, 승강기임
- 협회는 업종별로 통계를 구축하면서 별도로 ① 토목공사, ② 주거용건축물공사, ③ 비 주거용건축물공사로 구분하여 원시계열 자료 구축
- 업종 특성을 기준으로, ① 내외장공사업 (실내건축, 금속구조물.창호,온실, 습식.방수, 도장, 석공, 지붕판금.건축물조립) ② 구조물공사업 (철근.콘크리트, 강구조물, 철강재설치, 비계.구조물해체) ③ 기반조성공사업 (상하수도, 포장, 토공, 보링.크라우팅(비계), 수중, 준설, 철도.궤도) ④ 조경공사업 (조경식재, 조경시설물설치) ⑤ 승강기.삭도설치공사업 (승강기설치, 삭도설치)2)3)

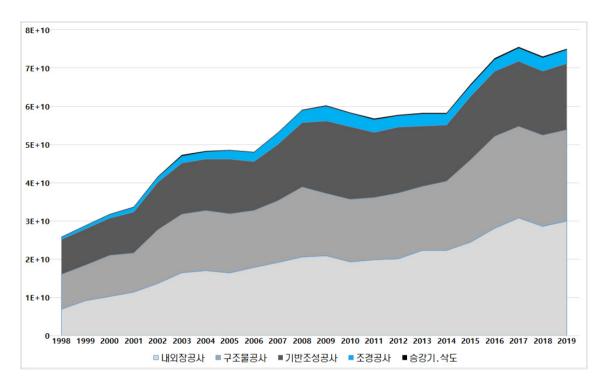
¹⁾ 전문건설업 업종별 원자료는 월별 데이터로 시계열은 1998년 1월부터 2019년 12월까지이며 반면 종합건설 원자료는 월별 데이터로 동일하나 시계열은 2008년 1월부터 2019년 12월까지임. 통계를 기존의 기성 통계가 아닌 계약금액을 선택하였음

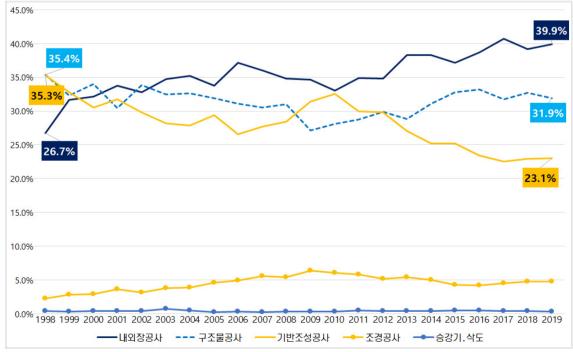
²⁾ 분석에서는 (1) 토목-비주거용건축-주거용건축 (2) 내외장공사, 구조물공사, 기반조성공사, 조겅공 사 등 두 가지 분류를 적용하여 분석 시도

³⁾ 앞 주석 2)의 내용중 (2)의 공종별 구분은 대한건설정책연구원(2019) 〈생산체계 개편에 따른 전문건 설업공제조합 대응전략 기초 연구〉참조

O 본 분석에 활용한 통계자료는 KOSCA와 KISCON 보유 계약금액을 원자료로 활용하였음. 선행 연구 대부분은 건설기성 통계를 활용하여 매출 흐름을 통한 건설활동 변화를 분석하였으나 본 분석에서는 계약금액을 활용하여 경제활동 발생을 중심으로 분석하고 자 함

3. 전문건설업 공종별 계약금액


O 전문건설업 계약금액 기준으로 시계열 기간 동안 전문건설업은 연평균 5.2%, 토목 공사는 16.2%, 비주거용건축은 3.4%, 주거용건축은 20.0% 증가한 것으로 분석됨. 건설수요 중 주택수요 확대가 꾸준히 증가한데 기인함. 또한 동기간 내외장공사는 7.2%, 구조물공사는 4.7%, 기반조성공사는 3.1%, 조경공사는 9.1% 각각 증가한 것으로 분석됨


〈표 1-1〉 전문건설업 및 공종별 계약금액 성장률 : 1998~2019년

공종 구분	연평균 성장률	업종 구분	연평균 성장률
전문건설업	5.2%		
		실내건축	10.2%
		금속구조물	6.1%
니바이자는 그나	7.20/	습식.방수	5.0%
내외장공사	7.2%	도장	5.9%
		석공	6.3%
		지붕판금	9.5%
		철근.콘크리트	4.2%
フォロカル	4 70/	강구조물	7.1%
구조물공사	4.7%	철강재설치	2.5%
		비계.구조물	7.4%
		상하수도	5.8%
		포장	5.0%
		토공	1.8%
기반조성공사	3.1%	보링.크라우팅	4.7%
		수중	3.2%
		준설	10.5%
		철도.궤도	5.6%
	9.1%	조경식재	8.5%
조경공사	9.1%	조경시설물	10.4%
스카기 사厂	4 20/	승강시설치	4.0%
승강기.삭도	4.3%	삭도설치	26.7%

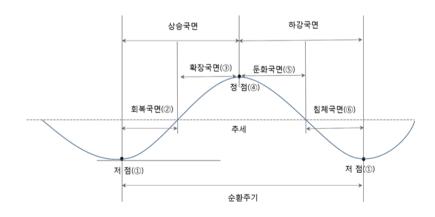
O 공종별 계약금액을 보면, 내외장공사, 구조물공사, 기반조성공사의 합이 대부분의 전문건설업 계약금액을 차지하고 있음. 1998년 3개 공종의 합은 97.4%에서 2019 년 94.1%로 감소하였음. 1998년 35.3%로 가장 높은 비중을 차지했던 기반조성공 Ι

사는 그 비중이 2019년 23.1%로 감소하였고, 1998년 35.4%의 비중을 차지한 구조 물공사는 2019년 31.9%로 미미한 감소세를 보였음. 반면 내외장공사는 1998년 26.7%로 상대적으로 작았으나 2019년 39.9%를 차지하여 급신장하였음. 이는 실내 건축, 지붕판금 등 업종의 신장세에 기인함

자료 : KOSCA

〈그림 1-1〉 공종별 계약금액 변동

Ⅱ. 전문건설업 경기변동분석

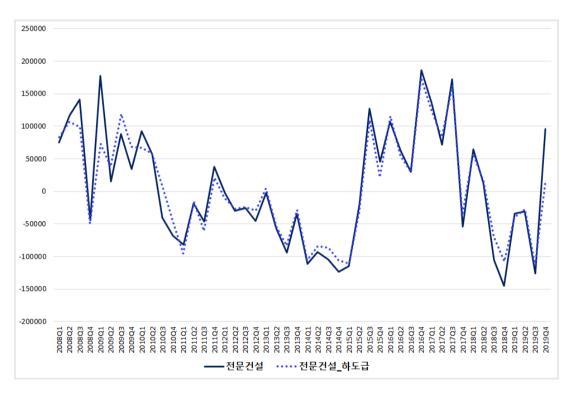

1. 전문 및 종합건설업 경기변동

1) 경기변동 분석 개요

- 각 원자료는 월별 자료를 분기별로 전환하여 계절조정한 후 분석하였음
 - 공종별 분석은 HP필터를 사용한 순환변동과 ARIMA를 시도했으나 분석기준으로 HP 필터를 선택. 분기 시계열 자료를 계절조정한 후 필터를 적용하였음

O 순환변동

- HP필터 분석은 장기 추세와 단기 순환변동치를 분해하여 분석 변수의 장단기 변화에 대한 정보를 알려주며 아래 그림과 같이 표현할 수 있음

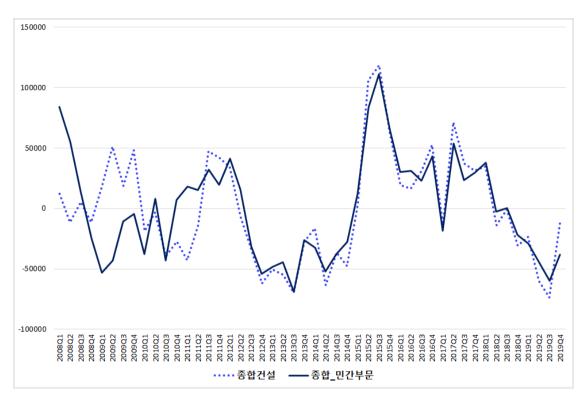

〈그림 2-1〉 경기변동 : 장기추세와 순환변동

- 모든 변수는 장기 추세를 중심으로 단기 변동을 통해 순환주기와 경기변동성 궤적을 남긴다는 기본 틀을 기초로 하여 경기변동을 분석함. 장기 추세를 제외한 순환변동 값이 내포하고 있는 단기 변동성을 중심으로 분석 Ш

2) 전문/종합건설업 순환변동

O 전문건설업 순환변동

- 전문건설업은 사업 특성 상 종합건설업의 하도급 혹은 공공부문의 원도급을 통해 사업을 영위하므로 전문건설업 순환변동은 종합건설업의 하도급 영향을 받음. 따라서 전문건설업 경기변동은 하도급 경기변동과 일치함

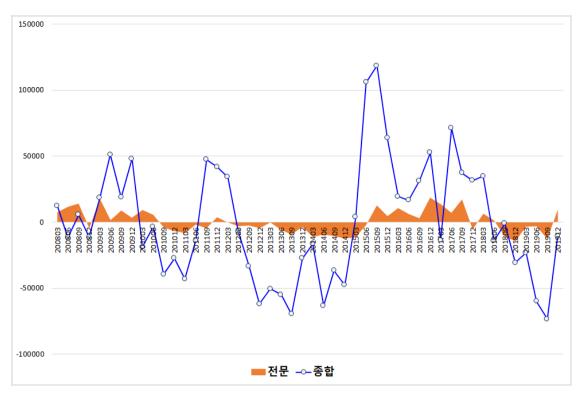


〈그림 2-2〉HP 순환변동: 전문건설업과 하도급 전문건설업

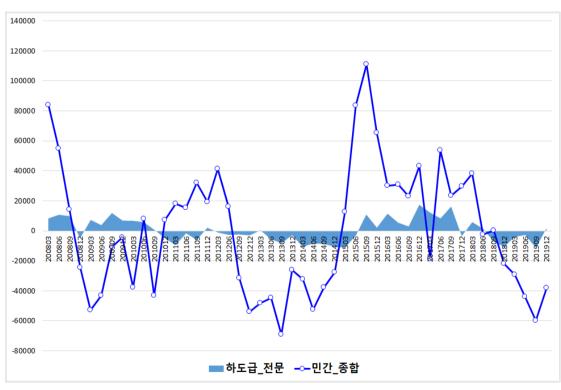
- 전문건설업은 대부분의 매출이 원도급보다는 하도급을 통해 이루어지는 특성을 가지고 있으며 하도급이 아닌 원도급은 정부 등 공공부문에서 발주되는 공사라 는 점에서 시장 변동성을 반영하지 못하므로 순환변동을 통한 경기변동은 전문 건설업과 하도급 전문건설업이 같은 변동 패턴을 보이는 것은 당연함

O 종합건설업 순환변동

- 종합건설업의 경기변동은 민간부문의 변동성을 반영하는 것으로 분석됨. 공공부문은 시장의 니즈 변화나 순환적 사이클과는 달리 정책적 필요에 의해 추진된다는 점에서 종합건설업 경기변동은 민간부문의 변동과 일치하는 것으로 판단


〈그림 2-3〉HP 순환변동: 종합건설업과 민간부문 종합건설업

- 2008년부터 시작된 4대강사업으로 종합건설업 순환변동과 민간부문 순환변동이 일 치하지 않으며 이 사업이 끝나는 2012년 시점 전후가 되면 종합건설업 순환변동과 민간부문 순환변동이 일치하는 것으로 볼 수 있음


O 전문건설업과 종합건설업 순환변동 비교

- 전문건설업은 특성 상 종합건설업(민간)의 하도급 혹은 공공부문 원도급을 통해 사업을 영위하므로 전문건설업 순환변동은 종합건설업의 하도급 영향을 받음. 따라서 종합건설업과 전문건설업의 순환변동의 차이는 고스란히 민간부문 종합 건설업과 하도급 전문건설업의 그것과 같아야 함은 앞에서 살펴본 분석에서 충 분히 알 수 있음
- 대체적은 종합건설업 보다는 전문건설업이, 그리고 민간부문의 종합건설업 보다는 하도급 전문건설업이 변동 폭이 작은 것으로 나타남. 사업 패턴을 반영하는 것으로 거시 등 주요 건설 변수의 영향은 종합건설업에 영향을 주어 변동 폭이 큰 반면 전문건설업은 종합건설업을 통해 파생되는 매출 기회를 가지므로 상대적으로 안정적인 여건을 가진 것으로 판단됨

 \parallel

(a) 전문/종합건설 순환변동

(b) 하도급전문/민간종합 순환변동

〈그림 2-4〉HP 순환변동 : 전문건설업과 종합건설업 비교

2. 전문건설업 순환변동 1: 동행성

O 상관분석 배경

- 상관분석은 두 변수간의 선형적 혹은 비선형적 관계의 유무를 판단하는 수단으로 활용되며 원인과 결과를 보여주는 인과관계는 아님. 다만 분석 기간 동안 동태적인 순환 변동이 일정한 상관관계를 가진다는 것의 의미를 포괄적인 동행성을 가진다고 본 분석에서 해석하고자 함
- 다양한 업종과 공종을 대상으로 상관분석을 실시했으며 세부적인 해석의 한계가 있는 업종별 분석은 제외하고 공종별로 의미 해석이 가능하거나 연관성이 있는 잠재적 관 계를 가지는 것으로 인지되는 공종 분석을 대상으로 논의하고자 함

O 피어슨 상관계수 (Pearson Correlation Coefficient)

- 가장 보편적으로 사용되는 상관관계 분석 방식으로 계수 값과 통계적 유의도를 기준으로 해석함. 대체적으로 계수 값이 0.3 이하라면 약한 상관관계, 0.3~0.7 정도면 뚜렷한 상관관계, 그리고 0.7 이상이면 강한 상관성이 있다고 해석했으며, 신뢰도는 통계적 유의확률을 기준으로 판단함
- 전문건설업은 모든 주요 공종과의 상관관계가 강할 뿐 아니라 통계적으로도 매우 유의한 수준인 것으로 분석되었음. 전체적인 변동성이 모든 공종과 연계되어 변하는 것으로 해석되며 굳이 계수의 크기를 기준으로 판단한다면 비주거용건축과 기반공사가 가장 강한 상관관계를 가지고 있으며, 주거용건축, 구조물공사, 내외장공사도 다음 순으로 강한 관계를 가진 것으로 분석되었음. 종합건설업, 토건, 건축, 전문건설업의 토목도 상관관계를 가지고 있으나 정도는 가장 약함
- 주거용건축과 비주거용건축의 변동이 전문건설업 계약금액 전체와 동행하는 특성을 강하게 가지고 있으며 건축물로 연관성이 높을 것으로 추정되는 내외장공사의 상관관계성도 높은 것으로 나타났음. 다만 내외장공사는 비주거용공사 보다는 주거용공사와 상관관계가 강한 것으로 분석됨
 - 업종별 혹은 공종별로 독립적으로 운영되나 구조물이라는 하나의 최종상품을 만들어내는 행위가 다양한 공종과 업종의 융복합을 통해 이루어지는 생산공정 상의 복잡성과 특성을 반영하는 것으로 판단됨

〈표 2-1〉 전문건설업 등 주요 변수의 Pearson 상관계수

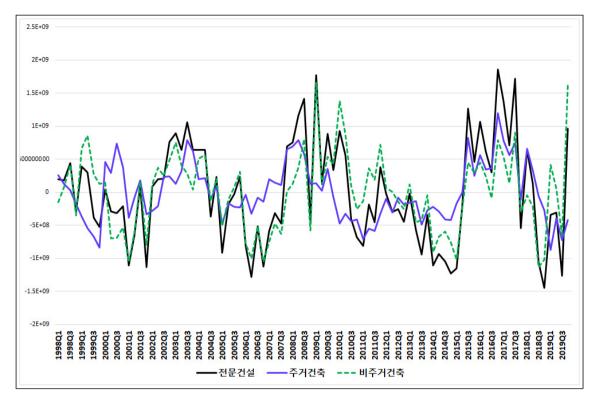
	 1 분	종합	토건	건축	전문	주거용	비주거용	토목	구조물	내외장	기반
	스 상관계수	1	.966**	.653**	.532**	.547**	.336*	.291*	.194	.323*	.514**
종합	유의확률		.000	.000	.000	.000	.019	.045	.186	.025	.000
건설	N	48	48	48	48	48	48	48	48	48	48
	상관계수	.966**	1	.575**	.514**	.518**	.335*	.298*	.197	.351*	.464**
토건	유의확률	.000		.000	.000	.000	.020	.040	.179	.015	.001
	N	48	48	48	48	48	48	48	48	48	48
	상관계수	.653**	.575**	1	.450**	.623**	.143	001	.324*	.338*	.425**
건축	유의확률	.000	.000		.001	.000	.332	.993	.025	.019	.003
	N	48	48	48	48	48	48	48	48	48	48
전문	상관계수	.532**	.514**	.450**	1	.657**	.846**	.444**	.568**	.657**	.850**
건설	유의확률	.000	.000	.001		.000	.000	.000	.000	.000	.000
업	N	48	48	48	88	88	88	88	88	88	88
주거	상관계수	.547**	.518**	.623**	.657**	1	.179	.329**	.320**	.588**	.689**
용건	유의확률	.000	.000	.000	.000		.095	.002	.002	.000	.000
축	N	48	48	48	88	88	88	88	88	88	88
비주	상관계수	.336*	.335*	.143	.846**	.179	1	.410**	.499**	.425**	.645**
거용	유의확률	.019	.020	.332	.000	.095		.000	.000	.000	.000
건축	N	48	48	48	88	88	88	88	88	88	88
	상관계수	.291*	.298*	001	.444**	.329**	.410**	1	.147	.103	.359**
토목 공사	유의확률	.045	.040	.993	.000	.002	.000		.171	.340	.001
0/1	N	48	48	48	88	88	88	88	88	88	88
구조	상관계수	.194	.197	.324*	.568**	.320**	.499**	.147	1	.473**	.339**
물공	유의확률	.186	.179	.025	.000	.002	.000	.171		.000	.001
사	N	48	48	48	88	88	88	88	88	88	88
내외	상관계수	.323*	.351*	.338*	.657**	.588**	.425**	.103	.473**	1	.447**
장공	유의확률	.025	.015	.019	.000	.000	.000	.340	.000		.000
사	N	48	48	48	88	88	88	88	88	88	88
기반	상관계수	.514**	.464**	.425**	.850**	.689**	.645**	.359**	.339**	.447**	1
공사	유의확률	.000	.001	.003	.000	.000	.000	.001	.001	.000	
	N	48	48	48	88	88	88	88	88	88	88

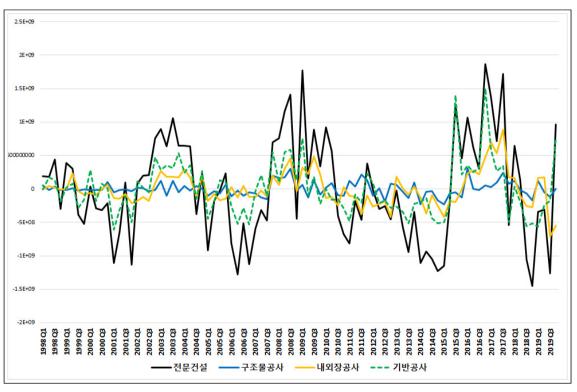
주 : **는 0.01 수준에서 유의 / *는 0.05 수준에서 유의

O 스피어만 상관계수 (Spearman Correlation Coefficient)

- 스피어만 분석은 앞의 피어슨 상관계수와는 달리 두 변수의 위계를 통해 방향의 동행 성을 중점적으로 분석할 수 있는 수단으로 서열척도를 가진 변수에 적용되는 분석 방 식임
- 본 분석에서는 공종과 업종이 융합되는 과정에서 잠재적인 공사 과정의 순서 혹은 금액 크기 등을 감안해야 하는 경우를 상정한 것으로 분석결과는 피어슨과 크게 다르지 않은 결과를 얻었음

• 업종의 이질적 특성이 공종으로 흡수되어 크기 등 다양한 특성으로 순위가 발생하는 등의 편차를 검토하기 위해 수행하였음


〈표 2-2〉 전문건설업 등 주요 변수의 Spearman 상관계수


	구 분	종합	토건	건축	전문	주거용	비주거용	토목	구조물	내외장	기반
T -1	상관계수	1.000	.958**	.648**	.587**	.597**	.467**	.394**	.245	.347*	.517**
종합 건설	유의확률		.000	.000	.000	.000	.001	.006	.093	.016	.000
신글	N	48	48	48	48	48	48	48	48	48	48
	상관계수	.958**	1.000	.539**	.558**	.549**	.447**	.399**	.215	.343*	.481**
토건	유의확률	.000		.000	.000	.000	.001	.005	.141	.017	.001
	N	48	48	48	48	48	48	48	48	48	48
	상관계수	.648**	.539**	1.000	.451**	.592**	.258	.159	.282	.320*	.431**
건축	유의확률	.000	.000		.001	.000	.077	.279	.052	.026	.002
	N	48	48	48	48	48	48	48	48	48	48
和口	상관계수	.587**	.558**	.451**	1.000	.614**	.853**	.542**	.557**	.607**	.861**
전문 건설	유의확률	.000	.000	.001		.000	.000	.000	.000	.000	.000
LZ	N	48	48	48	88	88	88	88	88	88	88
ᄌᄱᄋ	상관계수	.597**	.549**	.592**	.614**	1.000	.192	.327**	.246*	.559**	.650**
주거용 건축	유의확률	.000	.000	.000	.000		.073	.002	.021	.000	.000
	N	48	48	48	88	88	88	88	88	88	88
비주거	상관계수	.467**	.447**	.258	.853**	.192	1.000	.495**	.549**	.471**	.676**
용건축	유의확률	.001	.001	.077	.000	.073		.000	.000	.000	.000
827	N	48	48	48	88	88	88	88	88	88	88
토목	상관계수	.394**	.399**	.159	.542**	.327**	.495**	1.000	.227*	.133	.430**
공사	유의확률	.006	.005	.279	.000	.002	.000		.034	.215	.000
0.1	N	48	48	48	88	88	88	88	88	88	88
구조물	상관계수	.245	.215	.282	.557**	.246*	.549**	.227*	1.000	.444**	.387**
공사	유의확률	.093	.141	.052	.000	.021	.000	.034		.000	.000
	N	48	48	48	88	88	88	88	88	88	88
내외장	상관계수	.347*	.343*	.320*	.607**	.559**	.471**	.133	.444**	1.000	.495**
공사	유의확률	.016	.017	.026	.000	.000	.000	.215	.000		.000
J. 1	N	48	48	48	88	88	88	88	88	88	88
기반	상관계수	.517**	.481**	.431**	.861**	.650**	.676**	.430**	.387**	.495**	1.000
공사	유의확률	.000	.001	.002	.000	.000	.000	.000	.000	.000	
	N	48	48	48	88	88	88	88	88	88	88

주 : **는 0.01 수준에서 유의 / *는 0.05 수준에서 유의

O 순환변동 패턴

- 전문건설업의 변동 패턴이 다른 전문건설업 공종과의 연관성을 보면 전문건설업 경기변동을 순환변동으로 정의한다면 주거용 및 비주거용건축, 내외장공사, 기반 공사가 동행적으로 유사한 변동 패턴을 가지는 것으로 볼 수 있음 Ш

〈그림 2-5〉 HP 순환변동 : 전문건설업과 공종별 비교

- 이러한 동행적 상관관계를 확대하여 유추한다면 개별 공종에 영향을 주는 모든 변수가 직간접적으로 전문건설업 경기변동에 영향을 주는 것으로 추정할 수 있 으며 다양한 연관 업종과 공종이 복합적으로 버무려지는 생산공정 상 특성이 반

영된 결과임

- 전문건설업의 변동 패턴이 다른 전문건설업 공종과의 연관성을 보면 전문건설업 경기변동을 순환변동으로 정의한다면 주거용 및 비주거용건축, 내외장공사, 기반 공사업종의 특성에 따른 중공종분류(내외장공사, 구조물공사, 기반공사 등)의 순환변동과 전체 전문건설업의 순환변동을 비교하면 기반공사를 제외하고는 일정한 유사성이나 진폭 측면에서 격차가 큰 것으로 나타나고 있음

3. 전문건설업 순환변동 II: 선행성

O 시차 분석 필요성

- 앞에서 본 바와 같이 전문건설업과 종합건설업, 전문건설업 하도급과 종합건설 업 민간부문은 비슷한 순환변동 패턴을 보일 뿐 아니라 격차에서도 동일한 변동 규칙을 보이고 있음
- 사업 특성상 전문건설업은 종합건설업에서 생성되는 매출기회를 활용하는 구조라는 점에서 동행관계성이 가지는 분석의 한계가 있을 것으로 판단되며 입체적 분석을 위해 선행관계의 대략적 유무를 분석하고자 함
- 순환변동 혹은 경기변동의 동행적 측면에서의 비교는 충분히 가능하나 경기변동이 일정한 시차를 가지고 진행되는 일종의 시차성이 있는지에 대한 검증을 통해 실물 경제적 관점에서의 인과관계가 성립한다는 가설에서 출발하여 종합건설업 혹은 종합건설업의 공종의 변동성이 전문건설업 및 공종별 전문건설업에 영향을 주는지에 대한 혹은 시차를 가진 변동에서의 연관성 유무를 판단하고자 함

O 그랜저 인과분석 : Granger Causality

- 이론적 틀에 관계없이 두 변수의 시계열변동이 일정한 선행-후행의 관계가 있는지를 분석하기 위해 그랜저 인과분석을 실시하였음
- 분석 결과를 보면, 종합건설업과 종합건설업 중 토건과 건축이 인과관계를 가지고 있는 것으로 추정할 수 있음. 시차를 가진 인과관계의 강도를 통계적 유의도를 기준으로 판단한다면, 종합건설업 토건이 강한 연관성을 가지고 있는 것으로 분석되었으며 다음으로 종합건설업 전체, 건축의 순으로 분석되었음
- 시차를 가진 인과관계는 전문건설업, 주거용건축, 기반공사, 내외장공사를 대상으로

Ш

강한 것으로 나타났으며, 공사 특성이 가지는 상호 연관성과 계약금액의 크기에 따른 변동 영향에 기인하는 것으로 판단됨

- 다만 아쉬운 것은 시차가 고정된 것이 아니라는 점에서 전문건설업 혹은 공종별 전문건설 업의 변동성을 간접적으로 사전에 예측할 수 있는 정확성이 매우 제한적이라는 것임. 적응 적 기대가설과 같은 변동성 패턴에 따라 시간이 경과함에 따라 변동성에 영향을 주는 변화 가 점차 정도는 약화되나 영향력 정도는 지속되는 형태의 관계성이 있는 것으로 해석하는 정도의 결과를 얻었음
- 그러나 종합건설업과 토건 및 건축 순환변동은 1~4분기 시차까지 전문건설업과 주거용건축에 강하게 영향을 줄 뿐 아니라 선행한다는 것은 전문건설업과 주거용건축이 가지는 특징을 잘 보여주는 것으로 판단됨. 동행성이 가진 단기적 영향 뿐 아니라 선행성이 가진 중기적 영향도 종합건설업, 토건, 건축에서부터 전문건설업과 주거용건축으로 이어지는 가능성을 발견하였음

〈표 2-3〉 순환변동 인과분석

	구 분 종합건설 토건 건축 구 분		구 분	종합건설	토건	건축			
1	전문건설업	₩*	₩*	₩ **	2	전문건설업	₩ *	₩*	₩ *
분	주거용건축	₩ *	₩ **	₩ *	분	주거용건축	₩*	₩ **	₩ *
기	기반공사	₩ *	₩*	-	기	기반공사	₩ *	₩*	₩*
	전문건설업	₩ *	₩ **	₩ *		전문건설업	₩ *	₩ *	_
3	주거용건축	₩ *	₩ **	-	4	주거용건축	₩ *	⇔ **	_
분기	기반공사	-	₩ **	₩ *	분 기	기반공사	₩*	₩*	_
	내외장공사	-	-	₩ *	/	내외장공사	_	_	₩ *

주 : **는 0.01 수준에서 유의 / *는 0.05 수준에서 유의

4. 전문건설업 순환변동 III : 주택시장 연계성

- O 순환변동 비교: 전문건설업과 주거용건축
 - 시계열 기간 동안 성장세가 가장 컸던 주거용건축과 전문건설업의 연계성을 분석하기 위해 순환변동 주기를 비교 분석
 - 상관분석을 통해 얻은 변수 간 상관성 혹은 동행성을 기준으로 전문건설업과 공 종별 순화변동을 저점, 정점, 그리고 순화주기를 정리하면 다음 표과 같음
 - 1998년 IMF 외환위기는 공히 모든 경제주체에 영향을 주었으므로 이후의 변동을 전문건설업, 주거용_비주거용 건축, 기반공사 및 내외장공사는 각기 선행과 후행하면서 단기 변동을 보이고 있음

〈표 2-4〉전문건설업 순환변동 : 저점, 정점, 순환주기(분기)

기반공사

내외장공사

구 분	저점	정점	저점	정점	저점	정점	저점
전문건설업	2001.Q4	2003.Q3	2006.Q2	2009.Q1	2014.Q4	2016.Q4	2018.Q4
주거용건축	1999.Q4	2003.Q3	2005.Q1	2008.Q2	2011.Q1	2016.Q4	2019.Q1
비주거용건축	2001.Q1	2003.Q1	2006.Q4	2009.Q1	2015.Q1	2017.Q3	2018.Q3
기반공사	2001.Q1	2003.Q4	2006.Q2	2009.Q1	2015.Q1	2017.Q3	2019.Q4
내외장공사	2001.Q4	2004.Q4	2005.Q1	2009.Q3	2012.Q4	2018.Q4	2019.Q3
7 H	TITA	TJTJ	TITA	TJTJ	TITA	נדנד	TITA
구 분	저점	정점	저점	정점	저점	정점	저점
전 문 건설업		7	11	11	23	8	
주거용건축		15	6	13	11	23	
비주거용건축		8	15	9	24	10	

10

1

11

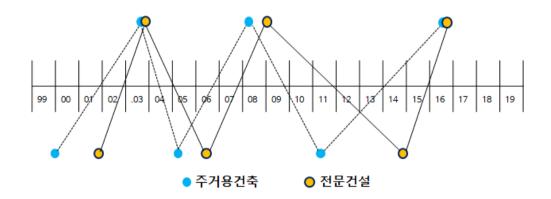
12

• 전문건설업의 경우 정점까지의 확장기간이 저점까지의 수축기간 보다 짧으며, 반면 주거용 건축은 정점까지의 확장기간이 저점까지의 수축기간 보다 긴 것으로 분석됨. 전문건설업과 주거용건축의 단기 변동이 선행과 후행, 동행을 반복하면서 각기 다른 확장과 수축 패턴을 가진 것으로 분석됨

11

18

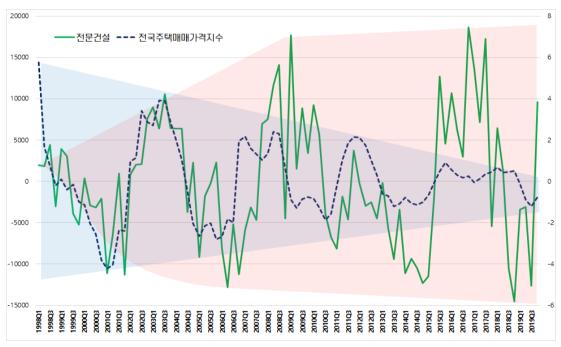
10


24

24

13

• 주거용건축은 주택수요와 연결된다는 점에서 주택시장이나 주택정책의 단기 변동성에 많이 노출되어 단기적 패턴은 수축이 급격하게 발생하는 특성을 보이는 것으로 판단됨. 또한 내외장공사도 비슷한 형태의 단기변동 패턴을 보임


Ш

〈그림 2-6〉 전문건설업과 주거용건축 순환변동

※ 주택시장과 전문건설업 비교

- 아래 그림은 전문건설업과 전국주택매매가격지수의 순환변동을 비교한 것임

자료: KOSIS, KOSCA

〈그림 2-7〉 전문건설업과 전국주택매매지수 순환변동

- 두 순환변동 간 일정한 패턴이 없어 전문건설업 경기변동을 설명할 수 없으며 단순히 상대적 안정성에 대한 판단만 가능함. 변동 폭 기준으로 보면 변동 폭을 안정성 기준으로 이해한다면 주택시장에서의 가격은 상당히 안정화되는 분위기로 전환되나 그에 반해 전문건설업 계약 변동은 여전히 진폭이 크며 결과적으로 영업 여건 불확실성이 큰 것으로 판단

Ⅲ. 전문건설업 공종별 영향

1. 분석 개요

O 공종별 영향 분석

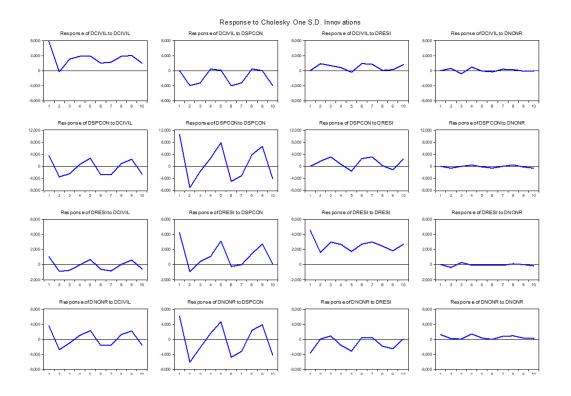
- 전문건설업은 20여개 업종으로 구분되며 각 업종은 특성 등의 기준에 따라 토목, 비주거용건축, 주거용건축 그리고 내외장공사, 구조물공사, 기반조성공사 등의 공종으로 나눌 수 있음. 각 업종과 공종이 전체 전문건설업 계약금액 변동에 얼 마만큼의 영향을 주며 전문건설업 계약금액을 얼마나 많이 설명할 수 있는지를 분석하고자 함
- 영향 정도를 알기위해 앞의 순환변동 분석과는 다르게 원자료를 활용하여 시계열 기법인 VAR 혹은 VEC를 적용함
- 공적분 검증을 통해 원자료 시계열 간의 공적분이 있으며 VEC 모델, 공적분 관계가 없다면 VAR을 활용함⁴⁾

O 공적분 분석

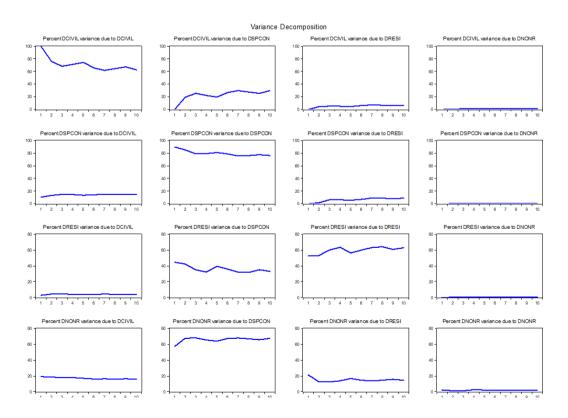
- 분석하고자 하는 시계열 변수의 원자료는 모두 단위근을 가지고 있는 것으로 분석되어 1차 차분한 변수를 활용하였음
- 또한 공적분 관계 분석을 통한 차수에 따라 별도 VEC 설정하여 추정하였음

2. 전문건설업 VEC 추정 I

○ 공적분 관계를 감안한 추정 결과는 다음 〈표 3-1〉과 같으며 각 변수 시차는 2분기 적용


⁴⁾ 업종별 영향 분석을 위해 VAR과 VEC를 시도했으나 도구변수(Instrumental Variable)를 과도하게 요구하거나 분석 과정에서 변수 행렬이 역행렬이 존재하지 않는 near-singular 특성을 가져 정상적인 분석이 불가능하였음. 따라서 본 섹터에서는 공종별 영향에 한정하여 분석을 시도하였음

 $\parallel \parallel$


시 최적의 결과를 주었음. 전체적인 적합도는 만족스러우며, 이를 통해 충격반응을 추정하고 분석 관계를 통해 설명 정도를 추출할 수 있음

〈표 3-1〉 전문건설업 계약금액 VEC 모형 추정 결과 Ⅰ

공적분 EQ DCIVIL(-1) 1,000000 DSPCON(-1) 7,195625 (4,63947) [1.55096] t value DRESI(-1) -3,487964 (4,44324) [-0.78500] t value DNONR(-1) 0,605135 (4,70498) [0.12862] t value C -7907.652	
RESI(-1) (4.63947) (1.55996) t value DRESI(-1) (1.55996) t value DRESI(-1) (2.44324) (-0.78500) t value DNONR(-1) 0.605135 (4.70498) (0.12862) t value C -7907.652 (4.70498) (0.12862) t value C -7907.652 (4.70498) (0.12862) t value C -7907.652 (0.01823) (0.02618) (0.01477) (0.01896) (0.01823) (0.02618) (0.01477) (0.01896) (0.01823) (0.02618) (0.01477) (0.01896) (0.01823) (0.02618) (0.01477) (0.01896) (0.01477) (0.01896) (0.01477) (0.01896) (0.014989) (0.21532) (0.12149) (0.15938) (0.15938) (0.21532) (0.12149) (0.15938) (0.15938) (0.12449) (0.14694) (0.21037) (0.11869) (0.15234 (0.14644) (0.21037) (0.11869) (0.15234 (0.14644) (0.21037) (0.11869) (0.15234 (0.54570) (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.49337) (0.70301) (0.39665) (0.50910 (0.53145) (0.53145) (0.76348) (0.43076) (0.55288 (0.53145) (0.76348) (0.43076) (0.55288 (0.53145) (0.76348) (0.43076) (0.55288 (0.4307	
DRESI(-1)	
Heart He	
DNONR(-1)	
지수 (A.70498) (A.70498) (A.70498) (A.70498) (A.70498) (A.70498) (A.70498) (A.70498) (A.70498) (D.12862] t value C -7907.652 D(DCIVIL) D(DSPCON) D(DRESI) D(DNONR D(DRESI D(DNONR D(DRESI) D(DNONR D(DRESI D(DNONR D(DRESI D(DNONR D(DRESI D(DNONR D(DRESI D(DNONR D(DNON DOD DOD DOD DOD DOD D(DNONR D(DNON DOD DOD DOD DOD DOD D(DNONR D(DNON DOD DOD DOD D(DNON D(DNON D(DNON DO	
지수 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	
C -7907.652 D(DCIVIL) D(DSPCON) D(DRESI) D(DNONR 공적분 EQ -0.196873 -0.495366 -0.124856 -0.373998 (0.01823) (0.02618) (0.01477) (0.01896 [-10.8014] [-18.9187] [-8.45141] [-19.7239 D(DCIVIL(-1)) -0.727385 0.449024 0.116204 0.263447 (0.14989) (0.21532) (0.12149) (0.15593 [-4.85288] [2.08534] [0.95650] [1.68951 D(DCIVIL(-2)) -0.057179 0.170701 -0.032457 0.226693 (0.14644) (0.21037) (0.11869) (0.15234 [-0.39046] [0.81144] [-0.27345] [1.48805 D(DSPCON(-1)) 0.407435 2.202518 0.957404 1.994956 (0.54570) (0.78394) (0.44231) (0.56770 [0.74662] [2.80954] [2.16454] [3.51407 D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301)<	
지역분 EQ -0.196873 -0.495366 -0.124856 -0.373998 (0.01823) (0.02618) (0.01477) (0.01896 (0.01823) (0.02618) (0.01477) (0.01896 (0.01823) (0.02618) (0.01477) (0.01896 (0.01477) (0.01896 (0.01477) (0.01896 (0.01477) (0.01896 (0.01477) (0.01896 (0.01477) (0.01896 (0.01477) (0.01896 (0.014989) (0.21532) (0.12149) (0.15593 (0.14989) (0.21532) (0.12149) (0.15593 (0.14989) (0.21532) (0.12149) (0.15593 (0.14644) (0.21037) (0.11869) (0.15234 (0.14644) (0.21037) (0.11869) (0.15234 (0.14644) (0.21037) (0.11869) (0.15234 (0.54570) (0.54570) (0.78394) (0.44231) (0.56770 (0.54570) (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.48937) (0.70301) (0.39665) (0.50910 (0.48937) (0.70301) (0.39665) (0.50910 (0.130649) (1.74379) (0.80331] (2.74544 (0.53481) (0.53145) (0.53145) (0.76348) (0.43076) (0.55288 (0.53145) (0.53145) (0.76348) (0.43076) (0.55288 (0.537104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669) (0.51669) (0.51669) (0.71349) (0.49666) (0.71349) (0.40256) (0.51669) (0.51669) (0.51669) (0.51669) (0.51669) (0.51669) (0.61595) (0.88487) (0.49925) (0.64079	
공적분 EQ -0.196873 -0.495366 -0.124856 -0.373998 (0.01823) (0.02618) (0.01477) (0.01896 (0.01823) (0.02618) (0.01477) (0.01896 (0.01823) (0.02618) (0.01477) (0.01896 (0.01823) (0.02618) (0.01477) (0.01896 (0.01823) (0.01477) (0.01896 (0.19.7385) (0.449024 (0.116204 (0.263447) (0.14989) (0.21532) (0.12149) (0.15593 (0.12149) (0.15593 (0.12149) (0.15593 (0.12149) (0.15593 (0.14644) (0.21037) (0.11869) (0.15234 (0.14644) (0.21037) (0.11869) (0.15234 (0.39046) (0.81144) (0.21037) (0.11869) (0.15234 (0.54570) (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.78394) (0.44231) (0.56770 (0.789349) (0.44231) (0.56770 (0.48937) (0.70301) (0.39665) (0.50910 (0.59910 (0.53145) (0.53145) (0.76348) (0.43076) (0.55288 (0.53145) (0.53145) (0.76348) (0.43076) (0.55288 (0.53145) (0.28481) (-2.31040) (-3.12737) (-2.15746 (0.49666) (0.71349) (0.40256) (0.51669 (0.51669) (0.71349) (0.40256) (0.51669 (0.71349) (0.40256) (0.51669 (0.71349) (0.49925) (0.64079 (0.64079) (0.64079) (0.64079) (0.64079))
(0.01823) (0.02618) (0.01477) (0.01896 [-10.8014] [-18.9187] [-8.45141] [-19.7239] D(DCIVIL(-1)) -0.727385 0.449024 0.116204 0.263447 (0.14989) (0.21532) (0.12149) (0.15593 [-4.85288] [2.08534] [0.95650] [1.68951] D(DCIVIL(-2)) -0.057179 0.170701 -0.032457 0.226693 (0.14644) (0.21037) (0.11869) (0.15234 [-0.39046] [0.81144] [-0.27345] [1.48805] D(DSPCON(-1)) 0.407435 2.202518 0.957404 1.994956 (0.54570) (0.78394) (0.44231) (0.56770 [0.74662] [2.80954] [2.16454] [3.51407] D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910 (0.50910 (0.53145) (0.53145) (0.76348) (0.43076) (0.55288 (0.53145) (0.76348) (0.43076) (0.55288 (0.52881) [-2.31040] [-3.12737] [-2.15746] D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 (0.51669) [-0.71901] [-1.36838] [-1.17583] [-1.81445] D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646337 (0.61595) (0.88487) (0.49925) (0.64079	
[-10.8014] [-18.9187] [-8.45141] [-19.7239] D(DCIVIL(-1)) -0.727385 0.449024 0.116204 0.263447	
D(DCIVIL(-1))	
(0.14989) (0.21532) (0.12149) (0.15593 [-4.85288] [2.08534] [0.95650] [1.68951 D(DCIVIL(-2)) -0.057179 0.170701 -0.032457 0.226693 (0.14644) (0.21037) (0.11869) (0.15234 [-0.39046] [0.81144] [-0.27345] [1.48805 D(DSPCON(-1)) 0.407435 2.202518 0.957404 1.994956 (0.54570) (0.78394) (0.44231) (0.56770 [0.74662] [2.80954] [2.16454] [3.51407 D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910 [1.30649] [1.74379] [0.80331] [2.74544 D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192820 (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746 D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669	
[-4.85288] [2.08534] [0.95650] [1.68951] D(DCIVIL(-2)) -0.057179 0.170701 -0.032457 0.226693 (0.14644) (0.21037) (0.11869) (0.15234) [-0.39046] [0.81144] [-0.27345] [1.48805] D(DSPCON(-1)) 0.407435 2.202518 0.957404 1.994956 (0.54570) (0.78394) (0.44231) (0.56770) [0.74662] [2.80954] [2.16454] [3.51407] D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910) [1.30649] [1.74379] [0.80331] [2.74544] D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192826 (0.53145) (0.53145) (0.76348) (0.43076) (0.55288) [0.28481] [-2.31040] [-3.12737] [-2.15746] D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669) [-0.71901] [-1.36838] [-1.17583] [-1.81445] D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646333 (0.61595) (0.88487) (0.49925) (0.64079)	
D(DCIVIL(-2)) -0.057179 0.170701 -0.032457 0.226693 (0.14644) (0.21037) (0.11869) (0.15234 [-0.39046] [0.81144] [-0.27345] [1.48805] D(DSPCON(-1)) 0.407435 2.202518 0.957404 1.994956 (0.54570) (0.78394) (0.44231) (0.56770 [0.74662] [2.80954] [2.16454] [3.51407] D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910 [1.30649] [1.74379] [0.80331] [2.74544] D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192826 (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746] D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445] D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646331 (0.61595) (0.88487) (0.49925) (0.64079	
(0.14644) (0.21037) (0.11869) (0.15234) [-0.39046] [0.81144] [-0.27345] [1.48805] D(DSPCON(-1)) 0.407435 2.202518 0.957404 1.994956 (0.54570) (0.78394) (0.44231) (0.56770 [0.74662] [2.80954] [2.16454] [3.51407 D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910 [1.30649] [1.74379] [0.80331] [2.74544 D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192820 (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746 D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445 D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646331 (0.61595) (0.88487) (0.49925) (0.6	
[-0.39046] [0.81144] [-0.27345] [1.48805 D(DSPCON(-1))	
D(DSPCON(-1)) 0.407435 2.202518 0.957404 1.994956 (0.54570) (0.78394) (0.44231) (0.56770 [0.74662] [2.80954] [2.16454] [3.51407 D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910 [1.30649] [1.74379] [0.80331] [2.74544 D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192820 (0.53145) (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746 D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445 D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646333 (0.61595) (0.88487) (0.49925) (0.49925)	
(0.54570) (0.78394) (0.44231) (0.56770 [0.74662] [2.80954] [2.16454] [3.51407 D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910 [1.30649] [1.74379] [0.80331] [2.74544 D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192820 (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746 D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445 D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646337 (0.61595) (0.88487) (0.49925) (0.64079	
[0.74662] [2.80954] [2.16454] [3.51407 D(DSPCON(-2))	
D(DSPCON(-2)) 0.639349 1.225903 0.318633 1.397694 (0.48937) (0.70301) (0.39665) (0.50910 [1.30649] [1.74379] [0.80331] [2.74544] D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192820 (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746] D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445] D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646333 (0.61595) (0.88487) (0.49925) (0.64079	
(0.48937) (0.70301) (0.39665) (0.50910 [1.30649] [1.74379] [0.80331] [2.74544] D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192820 (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746] D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445] D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646333 (0.61595) (0.88487) (0.49925) (0.64079	
[1.30649] [1.74379] [0.80331] [2.74544 D(DRESI(-1))	
D(DRESI(-1)) 0.151363 -1.763935 -1.347158 -1.192820 (0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746] D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669) [-0.71901] [-1.36838] [-1.17583] [-1.81445] D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.6463333 (0.61595) (0.88487) (0.49925) (0.64079)	•
(0.53145) (0.76348) (0.43076) (0.55288 [0.28481] [-2.31040] [-3.12737] [-2.15746] [-2.15746] [-2.31040] [-3.12737] [-2.15746] [-2.15746] [-2.31040] [-3.12737] [-2.15746] [-3.12737] [-2.15746] [-3.12737] [-3.1	
[0.28481] [-2.31040] [-3.12737] [-2.15746] D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669) [-0.71901] [-1.36838] [-1.17583] [-1.81445] D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646337 (0.61595) (0.88487) (0.49925) (0.64079)	
D(DRESI(-2)) -0.357104 -0.976330 -0.473346 -0.937504 (0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445 D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646331 (0.61595) (0.88487) (0.49925) (0.64079	
(0.49666) (0.71349) (0.40256) (0.51669 [-0.71901] [-1.36838] [-1.17583] [-1.81445 D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646333 (0.61595) (0.88487) (0.49925) (0.64079	
[-0.71901] [-1.36838] [-1.17583] [-1.81445 D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.646331 (0.61595) (0.88487) (0.49925) (0.64079	
D(DNONR(-1)) 0.644680 -0.207552 -0.244337 -0.64633 ⁻¹ (0.61595) (0.88487) (0.49925) (0.64079	
(0.61595) (0.88487) (0.49925) (0.64079	
[1.04664] [-0.23456] [-0.48940] [-1.00865	
D(DNONR(-2)) -0.402786 -0.297838 0.084176 -0.891672	
(0.54069) (0.77674) (0.43825) (0.56249))
[-0.74495] [-0.38344] [0.19207] [-1.58522]
C 190.5978 607.9902 64.43235 533.1312	2
(850.368) (1221.62) (689.256) (884.655)	•
[0.22414] [0.49769] [0.09348] [0.60264	_
Adj. R-squared 0.865649 0.942958 0.779718 0.948195	
F-statistic 60.42045 153.4510 33.64330 169.7960	
Log likelihood -866.5149 -896.9450 -848.8701 -869.8352 Akaike AlC 20.86940 21.59393 20.44929 20.94846	
Schwarz SC 21.15878 21.88331 20.73867 21.23784	4
Mean dependent 31.61379 -137.5844 -144.6862 12.17683	
S.D. dependent 21242.09 46832.59 13446.27 35587.64	1
Determinant resid covariance (dof adj.) 2.05E+29	
Determinant resid covariance 1.24E+29 Log likelihood -3290.243	
Akaike information criterion 79.38673	
Schwarz criterion 80.66001	

〈그림 3-1〉 전문건설업 계약금액 VEC 추정 결과 I: 충격반응 Impulse Response

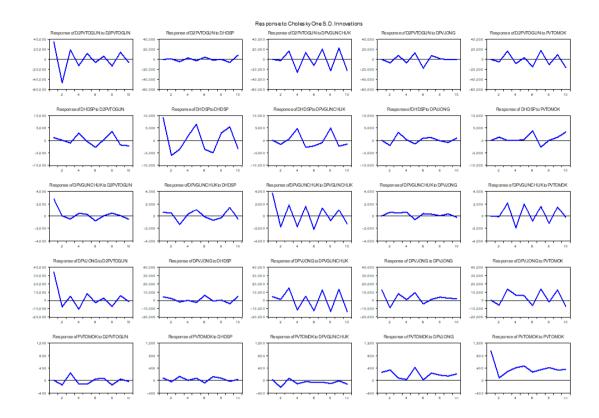
〈그림 3-2〉 전문건설업 계약금액 VEC 추정 결과 I: 분산분해 Variance Decomposition

 $\parallel \parallel$

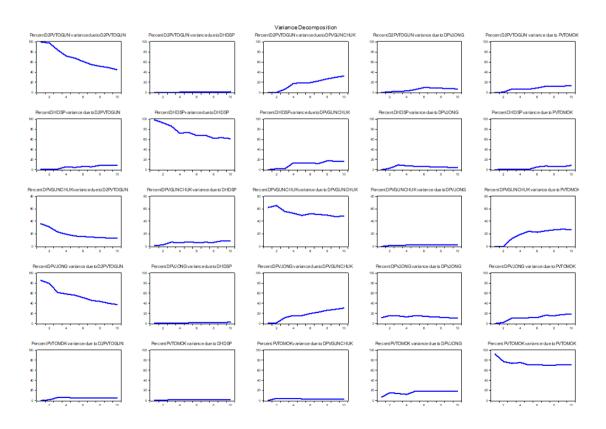
- O 이상 VEC 모형을 통한 분석 결과, 전문건설업 계약금액 분산 설명에 대한 기여도를 분산분해방식을 통해 보면 비주거용건축이 70%를 설명하며, 다음으로는 토목이 14.8%, 그리고 주거용건축이 13.9%, 마지막으로 전문건설업 자체는 1.4% 설명하는 것으로 분석되었음
 - 따라서 전체 전문건설업 계약금액 변동의 70%는 비주거용건축에 의해 영향을 받으며 주거용건축을 포함한 전체 건축공사는 전문건설업 계약금액의 84% 설명하는 것으로 추정됨

/п	2_2\	전문건설업	게이트그에	디사디테	ı
〈並	3-2)	신문건설업	게약금액	문산문애	ı

Period	S.E.	DCIVIL	DNONR	DRESI	DSPCON
1	11185.28	10.28888	63.68789	24.65308	1.370157
2	13823.91	13.14207	67.09951	18.74388	1.014536
3	14486.84	14.81514	65.48581	18.61147	1.087593
4	14768.96	14.46357	64.82797	19.64336	1.065104
5	17033.04	13.36255	67.76402	17.45887	1.414568
6	18162.35	14.06047	69.25766	15.40420	1.277665
7	18898.94	15.19139	68.93937	14.53289	1.336344
8	19326.33	14.75873	68.72917	15.23385	1.278251
9	20611.07	14.29919	69.38083	14.87601	1.443972
10	21303.80	14.77885	69.93502	13.92583	1.360302
	Chole	sky Ordering: DC	CIVIL DNONR DRI	ESI DSPCON	
				•	


3. 전문건설업 계약금액 VEC 추정 Ⅱ

- O 종합건설업 민간부문 변동이 전체 종합건설업을 설명한다는 분석 결과를 토대로 하 도급 기반의 특성을 가진 전문건설업을 종합건설업에 의한 영향을 분석하기 위해선 민간부문 종합건설업 공종을 통해 모델을 구축하는 것이 적절함
- O 전문건설업 공종별 분석에서는 내외장, 기반, 구조물 등 구분에 의한 공종은 변수 행렬의 near-singular 문제로 추가 분석이 불가능하여 종합건설업 공종과의 분석을 시도
- O 종합건설업 공종도 singular 문제로 조경, 설비 공종은 제외하여 정상적인 결과 도출하였음. 각 공종별 단위근 검증에서는 토목은 단위근이 없으며, 하도급 전문건설업, 종합-건축, 종합건설업은 1차 차분, 종합-토건은 2차 차분하여 분석


〈표 3-3〉 전문건설업 계약금액 VEC 모형 추정 결과 Ⅱ

Cointegrating Eq:	CointEq1	CointEq2	CointEq3	CointEq4	
D2PVTOGUN(-1)	1.000000	0.000000	0.000000	0.000000	_
DHDSP(-1)	0.000000	1.000000	0.000000	0.000000	
DPVGUNCHUK(-1)	0.000000	0.000000	1.000000	0.000000	
DPVJONG(-1)	0.000000	0.000000	0.000000	1.000000	
PVTOMOK(-1)	0.183063	-1.446355	-0.888385	-11.47123	
1 1 1 3 1 1 3 1 (1)	(1.22574)	(0.96470)	(1.10375)	(8.53189)	
	[0.14935]	[-1.49928]	[-0.80488]	[-1.34451]	
C	393.8674	2740.509	838.0877	27249.43	D (D) (TO) (O)()
Error Correction:	D(D2PVTOGUN)	D(DHDSP) 0.392281	D(DPVGUNCHUK)	D(DPVJONG)	D(PVTOMOK)
CointEq1	-2.904978 (0.91166)	(0.23842)	-0.099247 (0.12251)	-0.066129 (0.95266)	-0.039281 (0.02563)
	[-3.18648]	[1.64534]	[-0.81010]	[-0.06941]	[-1.53233]
CointEq2	0.045568	-3.063273	-0.148860	0.280570	-0.016532
	(1.13536) [0.04014]	(0.29692) [-10.3167]	(0.15257) [-0.97565]	(1.18643) [0.23648]	(0.03193) [-0.51785]
CointEq3	5.947780	0.507234	-1.622061	5.835812	-0.134784
	(4.42618)	(1.15755)	(0.59481)	(4.62526)	(0.12446)
CointEq4	[1.34377]	[0.43819] 0.065959	[-2.72702]	[1.26173]	[-1.08295] 0.015104
Comteq4	-1.758537 (0.55840)	(0.14604)	0.067924 (0.07504)	-1.893684 (0.58352)	(0.015704
	[-3.14924]	[0.45166]	[0.90517]	[-3.24530]	[0.96194]
D(D2PVTOGUN(-1))	0.998076	-0.170643	0.091835	0.323078	0.018630
	(0.58611)	(0.15328)	(0.07876)	(0.61247)	(0.01648)
	[1.70289]	[-1.11327]	[1.16595]	[0.52750]	[1.13040]
D(D2PVTOGUN(-2))	0.082342	-0.017820	0.015053	0.038529	0.002053
	(0.17903)	(0.04682)	(0.02406)	(0.18708)	(0.00503)
	[0.45993]	[-0.38060]	[0.62567]	[0.20594]	[0.40788]
D(DHDSP(-1))	0.297820	1.491035	0.213979	0.217005	0.006209
	(0.73126)	(0.19124)	(0.09827)	(0.76415)	(0.02056)
	[0.40727]	[7.79662]	[2.17747]	[0.28398]	[0.30194]
D(DHDSP(-2))	-0.035439	0.704510	0.066948	-0.138416	0.012480
	(0.52251)	(0.13665)	(0.07022)	(0.54601)	(0.01469)
	[-0.06782]	[5.15561]	[0.95344]	[-0.25350]	[0.84942]
D(DPVGUNCHUK(-1))	-6.012553	-0.720256	0.089202	-4.770406	0.043518
	(3.57190)	(0.93414)	(0.48001)	(3.73255)	(0.10044)
	[-1.68329]	[-0.77104]	[0.18583]	[-1.27805]	[0.43329]
D(DPVGUNCHUK(-2))	-2.011602	-0.764115	0.233376	-0.557306	-0.010285
	(1.94262)	(0.50804)	(0.26106)	(2.02999)	(0.05462)
	[-1.03551]	[-1.50404]	[0.89396]	[-0.27454]	[-0.18828]
D(DPVJONG(-1))	1.308479	-0.256648	-0.017638	0.294785	0.010013
_ (=::::::(:,//	(0.47894)	(0.12525)	(0.06436)	(0.50048)	(0.01347)
	[2.73203]	[-2.04902]	[-0.27404]	[0.58900]	[0.74347]
D(DPVJONG(-2))	1.107151	-0.144330	0.040535	0.586346	0.016260
- (- : - : - : - : - : //	(0.38280)	(0.10011)	(0.05144)	(0.40002)	(0.01076)
	[2.89223]	[-1.44168]	[0.78796]	[1.46579]	[1.51061]
D(PVTOMOK(-1))	-19.56410	-1.928655	-0.961924	-22.17489	-0.875351
= ((· //	(6.00307)	(1.56995)	(0.80672)	(6.27306)	(0.16880)
	[-3.25902]	[-1.22848]	[-1.19239]	[-3.53494]	[-5.18574]
D(PVTOMOK(-2))	-9.328833	-1.299560	1.433929	-10.24094	-0.529223
D(1 V 10 1 V 10 1 (1 Z))	(5.66612)	(1.48183)	(0.76144)	(5.92096)	(0.15932)
	[-1.64642]	[-0.87700]	[1.88319]	[-1.72961]	[-3.32166]
C	6212.756	-1808.654	-254.7912	4101.620	-0.008195
C	(5462.91)	(1428.68)	(734.130)	(5708.61)	(153.611)
	[1.13726]	[-1.26596]	[-0.34707]	[0.71850]	[-5.3e-05]
Adj. R-squared	0.971702	0.949156	0.867778	0.901106	0.55566
F-statistic	104.0136	57.00400	20.68917	28.33555	4.750158
Log likelihood	-501.8825	-444.2096	-415.5793	-503.7742	-348.3160
=					
Akaike AIC	24.04104	21.35859	20.02694	24.12903	16.89842 17.51270
Schwarz SC	24.65542	21.97296	20.64132	24.74340	17.51279

 $\parallel \parallel$

〈그림 3-3〉 전문건설업 계약금액 VEC 추정 결과 Ⅱ : 충격반응 Impulse Response

〈그림 3-4〉 전문건설업 계약금액 VEC 추정 결과 Ⅱ : 분산분해 Variance Decomposition

- O 종합건설업과의 관계 추정을 위한 VEC 모형 II를 통한 분산분석 결과, 전문건설업 자체 설명 비율이 61%로 가장 크며, 민간건축이 16.3%, 민간토건이 9.1%, 민간토 목이 8.4%이며 마지막으로 민간종합이 4.7% 설명력을 가진 것으로 분석됨
- O 종합건설업 공종별 전문건설업 설명 기여도를 보면 전문건설업 자체 영향을 차감한 후 순(net) 종합건설업의 설명 영향 39% 중에서 민간토건과 민간건축 그리고 민간 토목은 각각 2:1:1의 영향력 비율을 구할 수 있음

〈표 3-4〉 전문건설업 계약금액 분산분해 Ⅱ

Period	S.E.	D2PVTOGUN	DHDSP	DPVGUNCHUK	DPVJONG	PVTOMOK
1	9191.328	1.486986	98.51301	0.000000	0.000000	0.000000
2	11367.81	0.976112	92.56763	1.956705	3.198057	1.301495
3	12418.51	1.446284	86.08950	1.854110	9.519159	1.090949
4	13740.21	5.798822	71.97027	13.52679	7.812456	0.891659
5	15560.04	4.610330	74.00652	13.70721	6.938342	0.737603
6	16836.90	6.630873	67.84139	13.47253	6.285348	5.769859
7	17828.99	5.934011	68.41592	12.25169	5.983691	7.414693
8	19077.92	8.637637	62.28575	17.36181	5.237444	6.477364
9	20111.15	8.607655	63.30713	16.99732	4.879044	6.208846
10	20843.03	9.082175	61.44715	16.34899	4.732168	8.389514
	Cholesky Or	dering: D2PVTOG	SUN DHDSP I	DPVGUNCHUK [DPVJONG PVT	MOK

- O (요약) 전문건설업 계약금액의 변동에 영향을 주는 변수는 동일한 전문건설업 영역에서는 건축이 84%, 토목이 15% 설명하며, 전문건설업 외부 요인인 종합건설업의경우 전문건설업 자체 원인을 제외하면 건축이 16%, 토건이 9%, 토목이 8% 설명함
 - 전문 및 종합건설업 모두 건축에 의한 영향이 더 큰 것으로 분석되었으며 이는 경제성 장으로 파생된 각종 사회간접자본 니즈는 꾸준한 건설 공급으로 어느 정도 충족되거 나 일정 규모 공급이 연간 정기적으로 발생하는 반면 건축 니즈는 다양하고 꾸준히 증가하는 수요로 이어지는 특성을 반영한 것으로 추정됨

Ⅳ. 전문건설업 동태모형

1. 동태모형 개관

- O 동태분석은 전문건설업 계약금액에 영향을 주는 주요 변수를 통해 계약금액을 추정할 수 있는 계량기반을 구축하는데 주 목적을 둠
 - 앞에서의 분석을 통해 얻을 수 있는 잠정적 결론은 업종별 변화를 독립변수로 한 전문건설업 추정은 다중공선성이나 singularity 문제로 적절하지 않은 방식임을 알 수 있으므로 건설 통계가 아닌 밀접하게 연관성을 가진 변수와 거시경제 변수 등을 통해 추정하는 방식을 채택
- O 동태모형 분석을 위한 변수는 건설투자, GDP, M2, 회사채수익률, 콜금리, 주택매매가격지수, 중간재가격지수, 건축허가면적 등을 활용함
 - 건설업과 밀접한 연관이 있는 거시경제 변수, 금리변수, 물가관련 변수, 주택관련 변수 등을 설명변수로 사용

〈표 4-1〉 동태모형 분석에 활용된 변수

	변 수	출처	
건설투자	명목/계절조정/분기	십억원	한국은행, 국민계정
GDP/GNI	명목/계절조정/분기	십억원	한국은행, 국민계정
M2	명목/계절조정/월(말잔)	십억원	한국은행, 통화금융통계
회시채(BBB-)	명목/월	%	한국은행, 시장금리 추이
콜금리	월(평균)	%	한국은행, 시장금리 추이
전국주택매매가격지수	월	-	한국감정원, 전국주택가격동향조사
중간재가격지수	월(건설용,국내용)	-	한국은행, 생산자물가조사
건축허가면적	월	m²	국토교통부, 건축허가. 착공통계

- 본 모형에서 활용된 설명변수와 전문건설업 계약액 관련 지표와의 인과관계를 살펴봄
 - 설명변수 대부분이 전문건설업 계약 관련 지표와 시차상 일부 차이만 존재할 뿐 인과관계가 있는 것으로 분석됨

〈표 4-2〉 그랜져 인과관계 분석

Causality →	전문건설업계약	전문하도급계약	주거용건축계약	종합건설민간계약
건설투자	00000	00000		0
GDP	0000	0 0 0 0	8	00000
M2	0000	0 0 0 8	0 284	0
화시채(BBB-)	0 0 0 8	0 0 0 8	0 0	0000
중간재가격지수	0 0 0	0 0 0		8
전국매매가격지수	00000	0 0 0 8		00000
건축허가면적	9 8 4	0 284	0 284	0 0

주 : 통계적 유의수준은 0.05 이하

2. 동태모형 추정

- O 동태모형은 독립변수의 시차를 적용하였으며 인과관계 분석 결과를 감안하여 최대 2분기의 시차로 한정하였음. 독립변수의 변동이 전문건설업에 대한 영향을 탄력계 수를 통해 추정할 수 있도록 변수 모두 로그 변환 후 사용하였음
 - 일반적 시차모형으로 시계열분석 수행
- O 전문건설업 계약금액 동태모형 추정 결과
 - 전체적인 모형의 적합도는 양호하며 자기상관 문제도 없는 것으로 분석되었음. 시차 별로 계수 값의 부호가 (+)(-)로 변하는 것은 분기별 자료의 특성으로 한 분기는 양의 영향으로 다음 분기는 기저효과 등으로 음의 영향을 주는 것으로 판단됨
 - GDP와 M2는 두 분기 모두 포함하는 것이 전체 적합도를 상승시킴. 그러나 개별 변수 GDP는 1분기 시차의 통계적 유의도는 없으며, 반면 M2는 1분기 시차는 (+), 2분기 시차는 (-)로 분석되었고 모두 통계적 유의도는 적절함. 전국주택가격지수도 비슷한 패턴의 결과를 얻었음
 - 기존 유일한 전문건설업 예측모형인 박선구(2012, 대한건설정책연구원)와는 달리 기성금액 대신 계약금액을 활용하였고 VAR과는 다른 일반 시게열 분석을 통해 추정하였음. 또한 박선구(2012)는 VAR 기반을 위해 중요 건설 변수를 활용하였다는 점에서 직접적인 연관성에 기초한 추정을 시도한 점이 본 분석과는 다름5)

〈표 4-3〉 전문건설업 계약금액 추정 결과

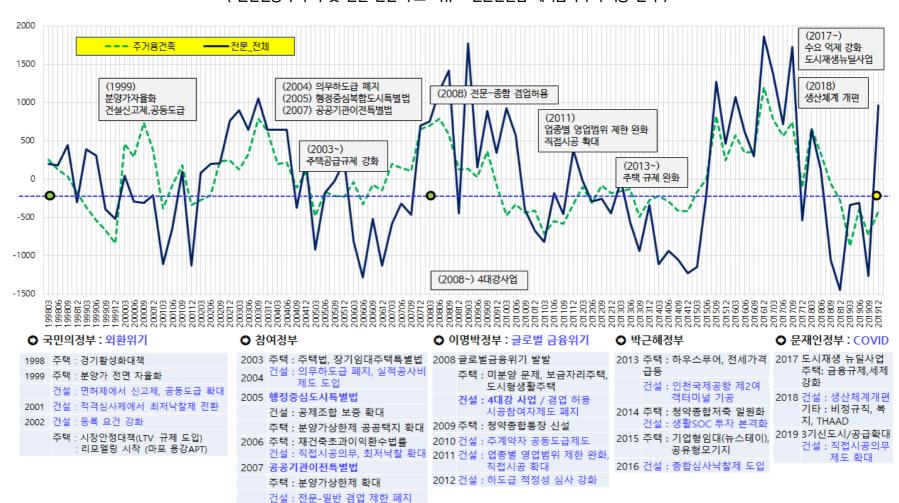
* 전문건설업 계약금액							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
건설투자(-1)	0.800485	0.132525	6.040258	0.0000			
GDP(-1)	0.551941	0.792517	0.696440	0.4890			
GDP(-2)	-2.389151	0.846238	-2.823262	0.0065			
M2(-1)	3.119400	0.748152	4.169474	0.0001			
M2(-2)	-2.067816	0.795539	-2.599266	0.0119			
건축허가면적(-1)	0.088947	0.040834	2.178234	0.0335			
건축허가면적(-2)	0.165713	0.040395	4.102341	0.0001			
회사채금리(-1)	-0.207054	0.111369	-1.859173	0.0682			
중간재가격지수(-1)	0.207149	0.180365	1.148499	0.2556			
전국주택매매가격지수(-1)	-1.490782	0.645979	-2.307786	0.0247			
전국주택매매가격지수(-2)	1.567681	0.583424	2.687037	0.0094			
상수항	3.927116	1.482476	2.649025	0.0104			
AR(1)	-0.031822	0.059963	-0.530699	0.5977			
AR(2)	-0.893624	0.058580	-15.25477	0.0000			
R-squared	0.905150	Mean d	Mean dependent var				
Adjusted R-squared	0.883517	S.D. de	S.D. dependent var				
S.E. of regression	0.076558	Akaike	Akaike info criterion				
Sum squared resid	0.334084	Schwa	Schwarz criterion				
Log likelihood	89.50142	Hannan-	Hannan-Quinn criter.				
F-statistic	41.84211	Durbin-	-Watson stat	2.574852			

⁵⁾ 본 시계열분석은 OLS를 사용하여 추정 오차 점검을 위한 RMSE는 별도 보고하지 않음

∨. 결 론

- O 본 연구는 생산체계 개편으로 전문건설업 업종 조정 등 많은 변화가 예상되는 상황에서 전문건설업 이해도 증진 및 향후 경기전망 기초 자료 확보를 위해 수행됨
- O 전문건설업 경기변동을 살펴보기 위해 다양한 시계열 분석을 실시하였으며, 대표적으로 HP필터 순환변동 분석, 피어슨 상관관계 분석, 그랜져 인과관계 분석, VEC분석, 동태분석 등을 수행함
 - HP필터 분석 결과, 전문건설업 순환변동은 전문건설업 하도급과 일치하는 변동 패턴을 보이고 있었음. 이는 전문건설업 사업 특성상 종합건설업의 하도급이 주된 계약과 기성의 원천이기 때문임. 전문건설업 하도급계약 비중은 70%가 넘는 수준임
 - 피어슨 상관관계 분석에서 전문건설업은 모든 주요 공종과의 강한 상관관계를 보이고 있었음. 계수 크기를 기준으로 판단하면 비주거용건축과 기반공사가 가장 강한 상관 관계를 가지고 있으며, 주거용건축, 구조물공사, 내외장공사가 다음 순으로 나타났음
 - 그랜져 인과관계 분석에서는 종합건설업 토건과 건축부문이 전문건설업 1~4분기 시 차까지 선행하는 것으로 나타남. 이는 전문건설업 계약금액이 종합건설업에 일정부분 후행하고 있음을 확인하는 결과임
 - 전문건설업 계약금액의 분산분해분석에서는 비주거용건축이 70% 설명하며, 다음으로는 토목이 14.8%, 주거용건축이 13.9%로 각각 나타남. 또한 전체적으로 건축공사가 전문건설업 계약금액의 84% 설명하고 있었음. 전문과 종합 모두 건축에 의한 영향이 더 큰 것으로 분석되었으며 이는 경제성장으로 파생된 각종 사회간접자본 니즈는 꾸준한 건설 공급으로 어느 정도 충족되거나 일정 규모 공급이 연간 정기적으로 발생하는 반면 건축 니즈는 다양하고 꾸준히 증가하는 수요로 이어지는 특성을 반영한 것으로 추정됨

- 전문건설업 계약금액에 영향을 주는 주요 변수를 통해 계약금액을 추정할 수 있는 계량기반을 구축하기 위해 거시경제 변수 등을 활용하여 동태분석을 수행함. 전체적인 모형의 적합도는 양호하며 자기상관 문제도 없는 것으로 분석되었음. 시차별로 계수 값의 부호가 (+)(-)로 변하는 것은 분기별 자료의 특성으로 한 분기는 양의 영향으로 다음 분기는 기저효과 등으로 음의 영향을 주는 것으로 판단됨. GDP와 M2는 두 분기 모두 포함하는 것이 전체 적합도를 상승시킴. 그러나 개별 변수 GDP는 1분기 시차의 통계적 유의도는 없으며, 반면 M2는 1분기 시차는 (+), 2분기 시차는 (-)로 분석되었고 모두 통계적 유의도는 적절함. 전국주택가격지수도 비슷한 패턴의 결과를 얻었음
- O 전문건설업의 업종 및 공종별 계약금액의 경기변동 패턴 분석과 전문건설업 계약금액 결 정식 추정(동태분석)을 위해 다양한 시계열 분석을 실시함
 - 업종별 분석을 시도했으나 통계자료 생성 특성으로 관계성 결과를 얻지 못했음. 분석의 한계는 분명히 존재하며 통계자료 혹은 추정 방식의 한계 등에 대한 추가적 분석과 점검이 필요함. 통계 특성 등 부분적으로 전문건설업 고유의 성격을 담을 수 있는 계량적 시도가 필요함
 - 거시경제 변수를 포함한 시계열분석은 기존 분석 틀과 같이 전문건설업과 연관성을 가진 변수를 활용하지 않고 간접적으로 파생되는 수요 중심의 관점에서 분석을 시도했다는 점도 해석에 한계가 있음. 향후 업종별 기여도 등 세분화된 미시 통계를 활용할 수 있다면 다른 접근도 가능할 것으로 판단됨


참고문헌

- 1. 대한건설정책연구원(2019), 생산체계 개편에 따른 전문건설업공제조합 대응전략 기초 연구, 전문 건설업공제조합
- 2. 박선구·김태준(2011), 건설경기 변동이 전문건설업공제조합 보증시장에 미치는 영향, 대한건설정 책연구원
- 3. 박선구(2012), 건설시장 예측모형에 관한 연구, 대한건설정책연구원
- 4. 박선구(2019), 2020년 건설경기 전망, 대한건설정책연구원
- 5. 정동빈(2015), 시계열 애널리스트를 위한 Eviews 솔루션, 황소걸음아카데미

과 내

부록

〈 순환변동과 주택 및 건설 관련 주요 이슈 : 전문건설업 계약금액과 주거용 건축 〉

전문건설업 공종별 시계열분석

2020년 10월 인쇄 2020년 10월 발행

발행인 유병권

발 행 처 **대한건설정책연구원**

서울특별시 동작구 보라매로5길 15, 13층(신대방동, 전문건설업회관)

TEL (02)3284-2600

FAX (02)3284-2620

홈페이지 www.ricon.re.kr

등 록 2007년 4월 26일(제319-2007-17호)

ISBN 979-11-5953-090-6

인 쇄 처 경성문화사(02-786-2999)

ⓒ대한건설정책연구원 2020